Stoke Therapeutics

November 2019

Disclaimer

This presentation has been prepared by Stoke Therapeutics, Inc. ("Stoke") for informational purposes only and not for any other purpose. Nothing contained in this presentation is, or should be construed as, a recommendation, promise or representation by the presenter or Stoke or any officer, director, employee, agent or advisor of Stoke. This presentation does not purport to be all-inclusive or to contain all of the information you may desire. Information provided in this presentation speaks only as of the date hereof. Stoke assumes no obligation to update any information or statement after the date of this presentation as a result of new information, subsequent events, or any other circumstances.

This presentation includes express and implied "forward-looking statements." In some cases, you can identify forward-looking statements by terms such as "anticipate," "believe," "estimate," "expect," "intend," "may," "might," "plan," "project," "will," "would," "should," "could," "can," "predict," "potential," "continue," or the negative of these terms, and similar expressions intended to identify forward-looking statements. However, not all forward-looking statements contain these identifying words. These statements may relate to our strategic plans or objectives, revenues or earnings projections, or other financial items. By their nature, these statements are subject to numerous uncertainties, including factors beyond our control, that could cause actual results, performance or achievement to differ materially and adversely from those anticipated or implied in the statements. You should not rely upon forward-looking statements as predictions of future events. Although our management believes that the expectations reflected in our statements are reasonable, we cannot guarantee that the future results, levels of activity, performance or events and circumstances described in the forward-looking statements will be achieved or occur. Further information on potential risk factors that could affect our business and its financial results are detailed in our most recent Quarterly Report on Form 10-Q for the quarter ended June 30, 2019 filed with the Securities and Exchange Commission (SEC), and other reports as filed with the SEC. We undertake no obligation to publicly update any forward-looking statement, whether written or oral, that may be made from time to time, whether as a result of new information, future developments or otherwise. Recipients are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date such statements are made. We undertake no obligation to update these forward-looking statements to reflect events or circumstances after the date hereof, or to re

Stoke is pioneering a new way to treat the underlying causes of severe genetic diseases by precisely upregulating protein expression

We Believe Stoke's Approach is Highly Differentiated and Positioned for Success

Novel technology

Antisense
oligonucleotides (ASOs)
target pre-mRNA splicing
to <u>restore target protein</u>
to near normal levels

Diseasemodifying therapies

ASOs are designed to address the underlying cause of severe genetic diseases, including autosomal dominant haploinsufficiencies

Efficient clinical program

Lead program for Dravet syndrome leverages <u>validated</u>
<u>ASO chemistry</u>, a <u>well-defined</u>
<u>patient population</u>, and <u>learnings from recently</u>
approved drugs

Phase 1/2 trial expected to begin in 1H 2020; preliminary efficacy data, expected in 2021

Potential broad applications

Emerging pipeline spans severe genetic diseases of the *CNS*, eye, liver and kidney

Plan to <u>nominate second</u>
<u>candidate</u> to treat an
additional genetic disease
for preclinical development
by 1H 2020

Critical Components of the Stoke Strategy

- Rapidly advance our lead program, STK-001, to clinical proof-of-concept, approval and commercialization
- Prioritize genetic epilepsies for near-term development efforts
- Expand our pipeline into other disease areas to fully exploit the potential of our proprietary platform
- Continue to strengthen and expand our IP portfolio
- Maintain broad commercial rights to our product candidates
- Opportunistically evaluate potential collaboration arrangements with a pharmaceutical or biotechnology company

Executive Team with Proven Experience in Rare Disease Drug Development

Edward Kaye, M.D. Chief Executive Officer and Director

Huw Nash, Ph.D. Chief Operating Officer and Chief Business Officer

Barry Ticho, M.D., Ph.D. Chief Medical Officer

Steve Tulipano, CPA Chief Financial Officer

Gene Liau, Ph.D.

Executive Vice President, Head of Research and Preclinical Development

Robin Walker, J.D. Senior Vice President, Chief Legal Officer

Precision Medicine Platform for Autosomal Dominant Haploinsufficiency Diseases

Autosomal Recessive

Disease examples:

- Phenylketonuria
- Lysosomal storage disorders
- Beta-thalassemia
- Cystic fibrosis

Current / emerging approaches:

- Gene therapy
- Small molecules
- Gene editing
- Modified mRNA
- Protein-based drugs

Autosomal Dominant Gain-of-function / Dominant Negative

Disease examples:

- Huntington's disease
- Parkinson's disease
- Spinocerebellar ataxia
- Autosomal dominant hypocalcemia

Current / emerging approaches:

- Gene therapy
- Oligonucleotides
- Gene editing
- Small molecules
- Protein-based drugs

Autosomal Dominant Haploinsufficiency

Disease examples:

- Dravet syndrome
- Optic atrophy
- Polycystic kidney disease
- Tuberous sclerosis

Emerging approach:

Stoke's TANGO technology

Existing precision medicine platforms are poorly suited to address haploinsufficiency diseases. Consequently, there has been little focus on drug development for these diseases despite a significant unmet medical need

We Believe Stoke's TANGO Technology Offers Key Advantages Based on Preclinical Studies

Ability to address underlying genetic cause of disease

TANGO exploits unique, patented mechanisms for antisense-mediated modulation of splicing to precisely upregulate protein expression, thereby addressing the underlying genetic cause of the disease rather than merely alleviating the symptoms of the disease

Applicability to most loss-offunction mutations

ASOs upregulate expression of the wild-type allele, meaning the TANGO mechanism does not rely on targeting a specific mutation

Utility across small and large gene targets

ASOs upregulate protein expression regardless of gene size and are not constrained to smaller gene targets

No observed unwanted offtarget effects TANGO-mediated upregulation of protein expression only occurs where the gene is being naturally transcribed, limiting the likelihood of expression in non-native tissues

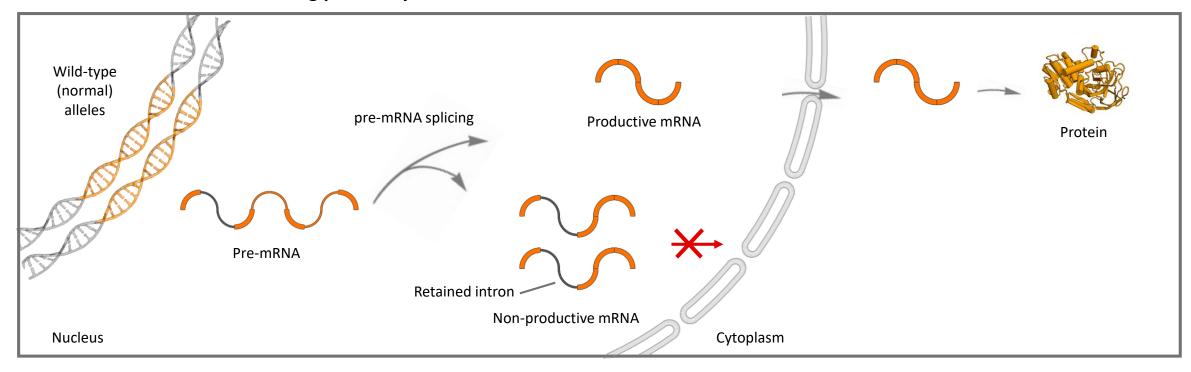
Ability to control dose level and duration

ASOs provide the ability for dose titration, thereby allowing for dose-dependent and reversible control of level and duration of protein expression. The ability to titrate dosage will enable us to deliver the right dose, at the right location, for each indication

Utility across a wide array of diseases and tissue types

ASO delivery to the CNS, eye, kidney and liver is well-established, enabling Stoke to address a broad range of genetic diseases. FDA-approved ASO (SPINRAZA) demonstrates ASO delivery to the CNS, and there are other ASOs in clinical development

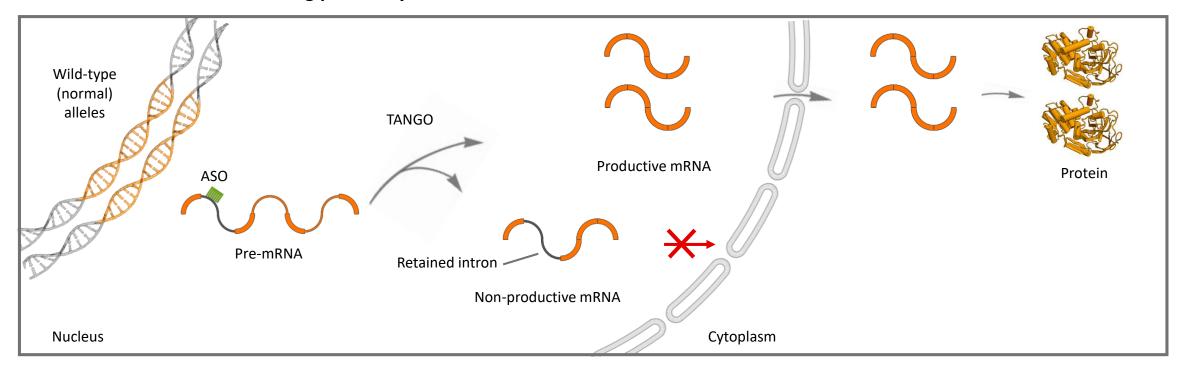
Simple and scalable manufacturing


ASOs are synthesized by highly scalable, solid-phase chemical synthesis and leverage a well-established, global manufacturing base

Source: Stoke data based on preclinical studies to date. Our product candidate has not been approved by the FDA.

Stoke's TANGO Technology Targets Retained Introns to Upregulate Protein Expression

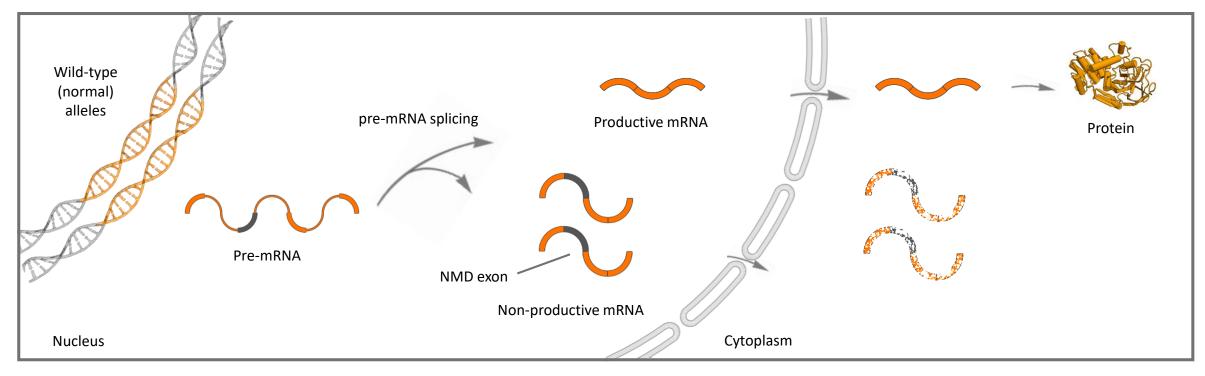
TANGO mechanism for increasing protein synthesis: Retained Intron



Retained introns are found in $^{\sim}60\%$ of gene transcripts and are part of the wild-type sequence of the gene. Non-productive mRNA remains in the nucleus and is not translated into protein

Stoke's TANGO Technology Targets Retained Introns to Upregulate Protein Expression

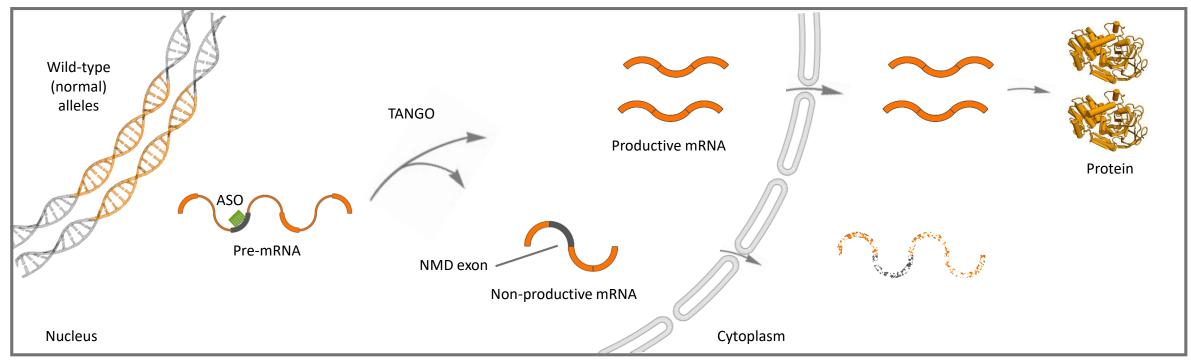
TANGO mechanism for increasing protein synthesis: Retained Intron



Stoke's ASOs bind to the pre-mRNA and redirect the splicing machinery to remove the retained intron. This splice-switching decreases non-productive mRNA and increase productive mRNA, which is translated into increased protein expression from the wild-type allele

Stoke's TANGO Technology Targets NMD Exons to Upregulate Protein Expression

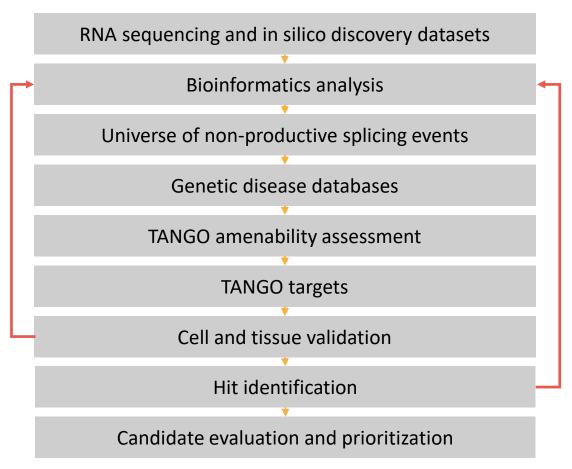
TANGO mechanism for increasing protein synthesis: Nonsense mediated decay (NMD) exon



NMD exons are found in over 25% of gene transcripts and are part of the wild-type sequence of the gene. Non-productive mRNA is degraded in the cytoplasm by NMD and is not translated into protein

Stoke's TANGO Technology Targets NMD Exons to Upregulate Protein Expression

TANGO mechanism for increasing protein synthesis: NMD exon


Stoke's ASOs bind to the pre-mRNA and redirect the splicing machinery to prevent inclusion of the NMD exon.

This splice-switching decreases non-productive mRNA and increase productive mRNA, which is translated into increased protein expression from the wild-type allele

Robust Target Identification Process Utilizing Proprietary Bioinformatics

Target identification process

- Next generation RNA sequencing yields proprietary database of approximately 85,000 non-productive events in the human transcriptome
- Cross-referencing with genetic disease databases identifies approximately 2,900 monogenic diseases amenable to TANGO
- Approach is highly predictive and enables rapid and systematic identification of clinically relevant targets

Intellectual Property Estate Including TANGO Mechanism and Top Targets

- Patents for TANGO technology exclusively licensed from University of Southampton and Cold Spring Harbor Laboratory
- Multi-national allowed and pending claims for the TANGO mechanisms, which cover the mechanisms independent of therapeutic strategy
- Multi-national pending claims for more than 140 genetic diseases amenable to TANGO
- Leveraging previously-validated ASO chemistries

Significant Unmet Need in Genetic Epilepsies

50 million people globally affected by epilepsy

of patients are refractory to medical treatment, especially those with a genetic epilepsy

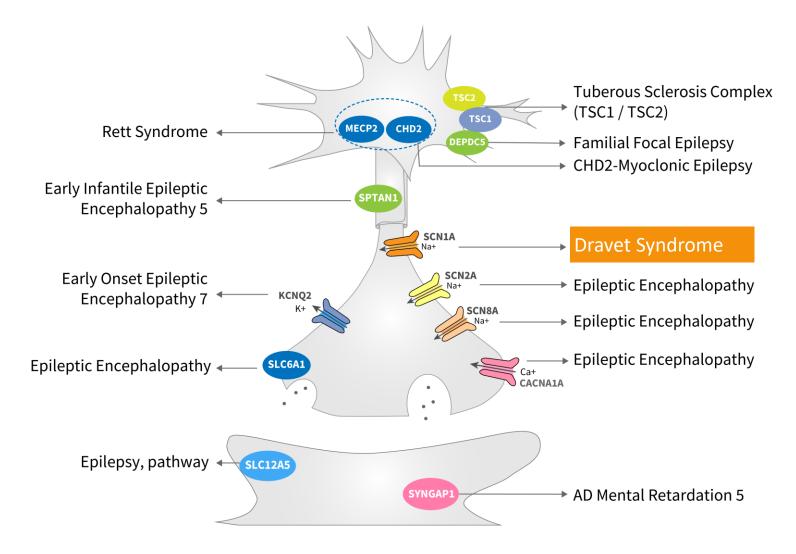
Up to

of patients with epilepsy have significant cognitive problems

of epilepsies have an identified genetic cause and many of these are haploinsufficiencies

Diagnostic work-up of epilepsy routinely includes genetic testing for more than

disease associated genes

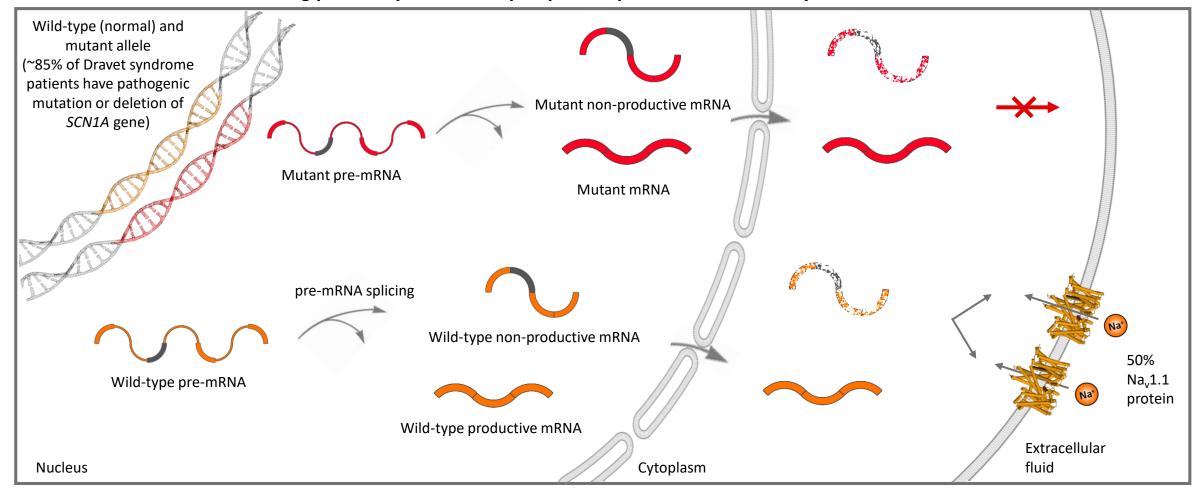

While genetic mechanisms are often well understood ...

genetically-targeted therapies for epilepsies are available

We Believe Many Genetic Epilepsies are Amenable to Stoke's TANGO Technology

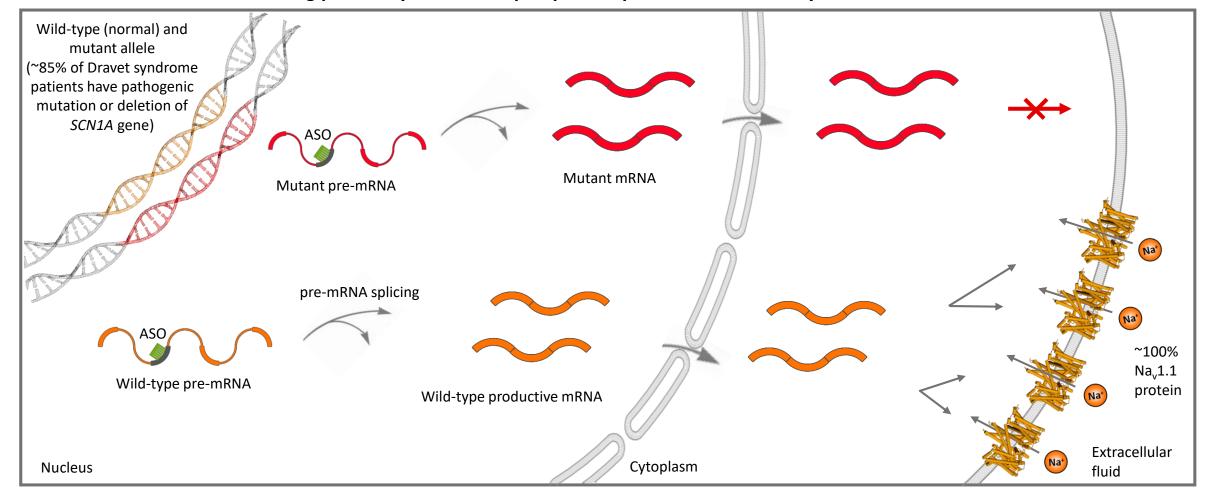
Lead Program

Dravet Syndrome: A Severe and Progressive Genetic Epilepsy

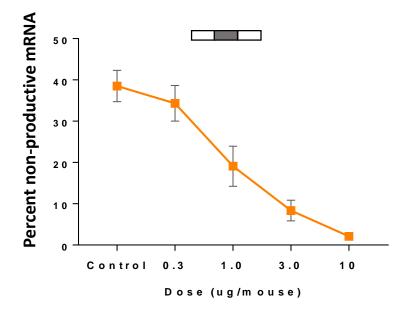


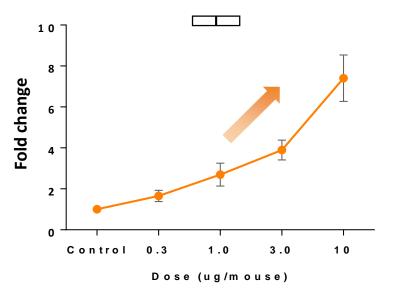
- Autosomal dominant condition caused by more than 1,250 *de novo* mutations in *SCN1A*, resulting in 50% Na_V1.1 protein expression
- Caused by pathogenic mutation or deletion of the SCN1A gene in ~85% of patients
- Existing antiepileptic drugs only address the occurrence of seizures, and more than 90% of Dravet syndrome patients still report suffering from incomplete seizure control
- No disease-modifying therapies in clinical development
- ~35,000 patients across U.S., Canada, Japan, Germany,
 France and the UK

Transformative Potential of TANGO Technology in Dravet Syndrome

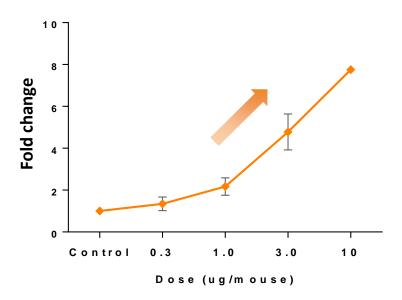

TANGO mechanism for increasing protein synthesis in a prospective patient with Dravet syndrome

Transformative Potential of TANGO Technology in Dravet Syndrome

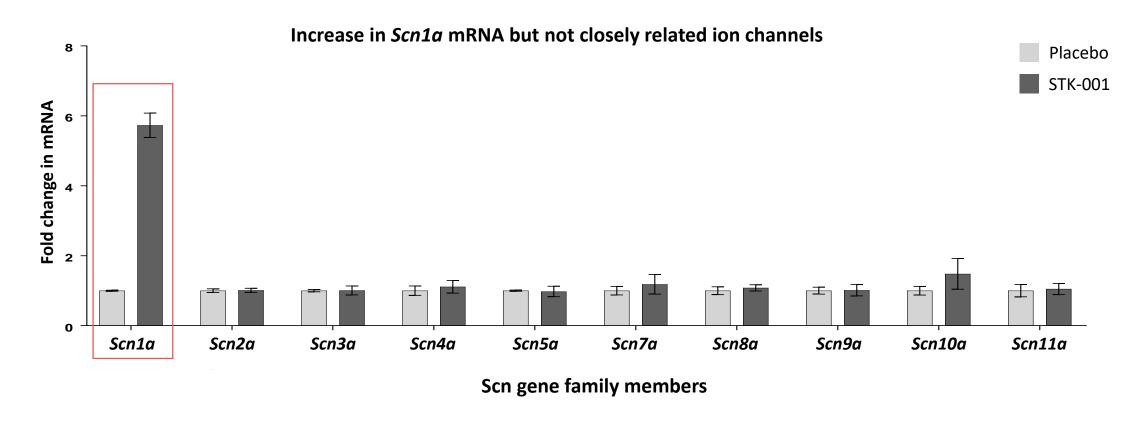

TANGO mechanism for increasing protein synthesis in a prospective patient with Dravet syndrome



STK-001 Increases *Scn1a* mRNA and Na_v1.1 Protein in Wild-type Mice

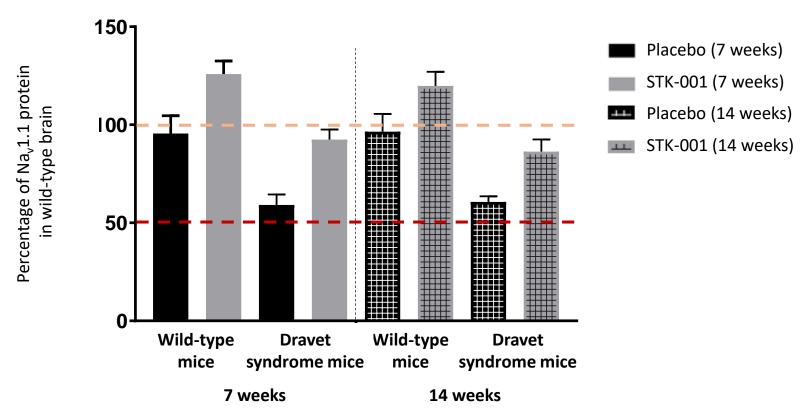

Decrease in non-productive Scn1a mRNA

Increase in productive Scn1a mRNA



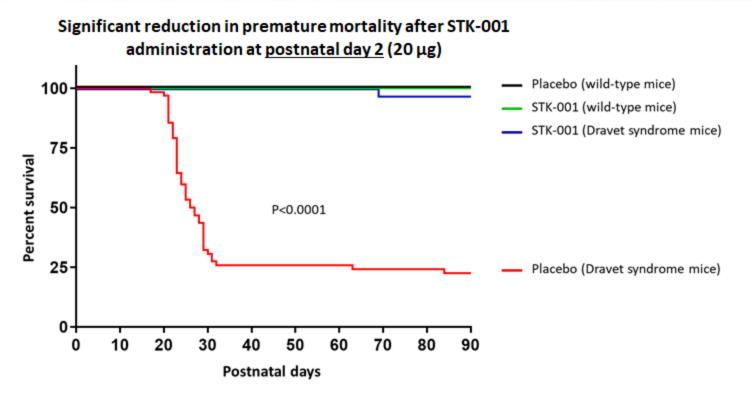
Increase of Na_V1.1 protein

STK-001 Selectively Upregulates Scn1a Gene in Wild-type Mice



STK-001 is very specific for *Scn1a* among the highly homologous family of sodium channel genes, limiting the likelihood of off-target activities

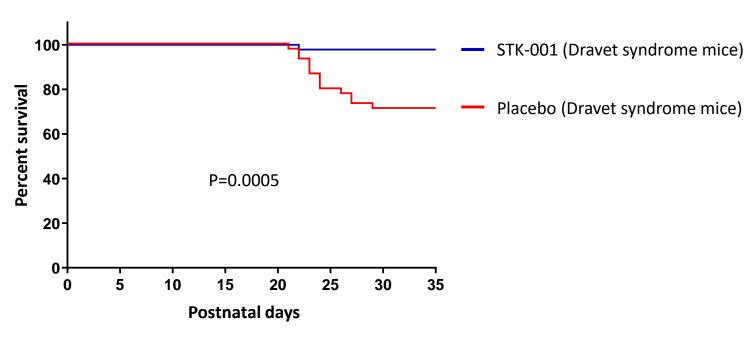
STK-001 Restores Na_v1.1 to Near Normal Levels for >3 Months in Dravet Syndrome Mice



In preclinical studies, STK-001 exhibits long-lasting exposure, suggesting the potential for a favorable dosing regimen of as few as two to three administrations per year in humans

STK-001 Significantly Reduces Premature Mortality in Dravet Syndrome Mice

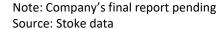
	Placebo wild-type	Placebo Dravet syndrome	STK-001 wild-type	STK-001 Dravet syndrome
Total n through 90 days	49	62	27	34
Number of deaths	0	48	0	1


Note: Neonate Dravet syndrome and wild-type mice were administered a single injection dose of either placebo (consisting of a phosphate-buffered solution) or 20 ug of STK-001 by intracerebroventricular injection (placebo: n=49 wild-type mice, n=62 Dravet syndrome mice; STK-001: n=27 wild-type mice, n=34 Dravet syndrome mice)

Source: Stoke data, University of Michigan

STK-001 Therapeutic Dosing also Significantly Reduces Premature Mortality

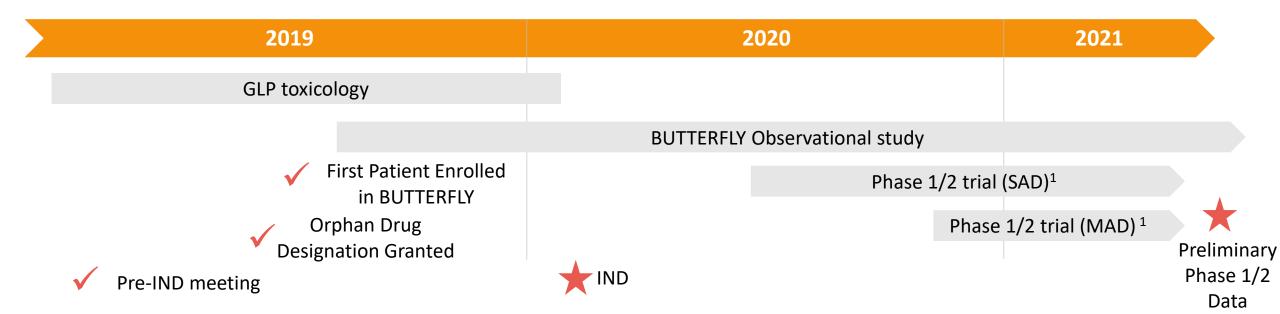
Significant reduction in premature mortality after STK-001 administration at postnatal day 14 (60 µg)


	Placebo wild-type	Placebo Dravet syndrome	STK-001 wild-type	STK-001 Dravet syndrome
Total n through 35 days	68	45	41	46
Number of deaths	0	13	0	1

Note: Neonate Dravet syndrome and wild-type mice were administered a single injection dose of either placebo (consisting of a phosphate-buffered solution) or 60 ug of STK-001 by intracerebroventricular injection (placebo: n=68 wild-type mice, n= 45 Dravet syndrome mice; STK-001: n= 41 wild-type mice, n=46 Dravet syndrome mice). Data is preliminary Source: Stoke data, University of Michigan

Preclinical Studies Show STK-001 Well-Tolerated at a Pharmacologically-Active Dose in Non-Human Primates

Key safety measures No complement activation No decrease in platelet counts No change in hepatic function No clinical signs or symptoms over 28 day period after administration Normal histopathology in key organs



Strong Preclinical Dataset Supporting Use of STK-001 in Dravet Syndrome

- Increase in Scn1a mRNA expression and Na_v1.1. protein levels in wild-type mice
- Selective upregulation of *Scn1a*, and not closely related ion channels in wild-type mice
- Restoration of Na_V1.1 protein to near normal levels in Dravet syndrome mice
- Effects persisting for at least 14 weeks in Dravet syndrome mice
- Dramatic reduction in mortality in Dravet syndrome mice
- Well-tolerated at a pharmacologically-active dose level in non-human primates

Efficient Clinical Program for STK-001 in Dravet Syndrome

Phase 1/2 trial

- Analogous trial design and endpoints to recently approved antiepileptic drugs for Dravet syndrome
- Change in seizure frequency over 12-week treatment period, cognitive function, and quality of life will be included as secondary endpoints
- Preliminary clinical data for primary and secondary endpoints of Phase 1/2 SAD study expected in 2021

Strong Momentum Going into 2020

- Nominated lead target
- Demonstrated in vivo proof of concept in mouse model for Dravet syndrome
- Completed pre-IND meeting for Dravet syndrome
- Completed Series B financing

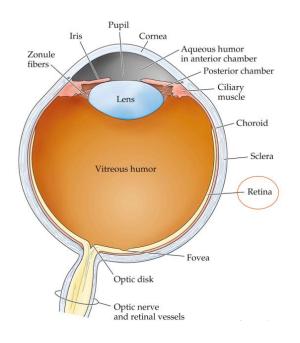
2018

2019 - 2020

- ✓ Completed Initial Public Offering
- Received FDA orphan drug designation for STK-001
- Enrolled first patient in BUTTERFLY, observational study for Dravet syndrome
- Complete GLP toxicology studies to support STK-001 IND application for Dravet syndrome in early 2020
- ☐ Initiate Phase 1/2 clinical trial for Dravet syndrome in 1H 2020
- Nominate second candidate to treat an additional genetic disease for preclinical development by 1H 2020
- Opportunistically secure first pharma partnership as early as 2019

Stoke's TANGO Technology may also be Well Suited for Treatment of Eye Diseases

Benefits of focusing on the eye for ASOs


- Localized delivery
- Immune privileged and small treatment space (0.05% of total body weight)
- Contralateral control for clinical trials
- Availability of non-invasive measurements that reflect functional outcome e.g. OCT

Advantages of TANGO for the eye

- Intravitreal delivery has safety & patient acceptance advantage over subretinal delivery
- Stoke preclinical data demonstrates long-term effects of up to 12 months
- Tunable and reversible control of level and specificity of protein expression
- No formulation or viral vector requirement
- Approved product precedence (Vitravene for cytomegalovirus retinitis)
- Potential to target large genes

Example TANGO targets

- CD274 (PD-L1) for autoimmune uveitis
- OPA1 for autosomal dominant optic atrophy

Stoke is Building a Pipeline of Precision Medicines

DRAVET Immediate focus **SYNDROME** Anticipated near-term focus **GENETIC EPILEPSIES** Anticipated near-to-mid-term **HAPLOINSUFFICIENCIES** focus and partnerships Potential longer-term **PATHWAY UPREGULATION** focus and partnerships

Cash Expected to be Sufficient to Fund Operations into 2023

Cash, Cash Equivalents and Restricted Cash as of 09/30/2019	\$233.2 million
Common Shares Outstanding as of 09/30/2019	32,724,153

Raised \$151.9 million in net proceeds in June 2019 initial public offering

Copyright Stoke Therapeutics, Inc. Not for publication or distribution