

Stoke Therapeutics

NASDAQ: STOK

March 2023

Disclaimer

This presentation has been prepared by Stoke Therapeutics, Inc. ("Stoke" or "our") for informational purposes only and not for any other purpose. Nothing contained in this presentation is, or should be construed as, a recommendation, promise or representation by the presenter or Stoke or any officer, director, employee, agent or advisor of Stoke. This presentation does not purport to be all-inclusive or to contain all of the information you may desire. Information provided in this presentation speaks only as of the date hereof. Stoke assumes no obligation to publicly update any information or forward-looking statement, whether written or oral, that may be made from time to time, whether as a result of new information, future developments, subsequent events, or circumstances after the date hereof, or to reflect the occurrence of unanticipated events.

This presentation contains "forward-looking" statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995, including, but not limited to: the ability of our TANGO platform to design medicines to increase protein production and the expected benefits thereof; expectations regarding our aspirations to execute in the clinic with STK-001, advance to the clinic with STK-002, and expand our pipeline through internal discovery and collaboration; the ability of STK-001 to treat the underlying causes of Dravet syndrome and reduce seizures or show improvements in non-seizure comorbidities at the indicated dosing levels or at all; the ability of STK-002 to treat the underlying causes of Autosomal Dominant Optic Atrophy (ADOA); the preclinical data and study results regarding OPA1; our future operating results, financial position and liquidity; our expectations about timing and execution of anticipated milestones, responses to regulatory authorities, expected nomination of future product candidates and timing thereof; and our expectations, plans, aspirations and goals, including those related to the goals of our collaboration with Acadia. These forward-looking statements may be accompanied by such words as "aim," "anticipate," "believe," "could," "estimate," "expect," "forecast," "goal," "intend," "may," "might," "plan," "potential," "possible," "will," "would," and other words and terms of similar meaning. These forward-looking statements involve risks and uncertainties, as well as assumptions, which, if they do not fully materialize or prove incorrect, could cause our results to differ materially from those expressed or implied by such statements, including, but not limited to, risks and uncertainties related to: our ability to develop, obtain regulatory approval for and commercialize STK-001, STK-002, and future product candidates, including any future product candidates nominated for SYNGAP1 or MECP2; the timing of data readouts and interim and final results of preclinical studies and clinical trials; positive results in a clinical trial may not be replicated in subsequent trials or success in early stage clinical trials may not be predictive of results in later stage clinical trials; preliminary interim data readouts of ongoing trials may show results that change when such trials are completed; clinical trials, including our ability to adequately manage clinical activities, unexpected concerns that may arise from additional data or analysis obtained during clinical trials, regulatory authorities may require additional information or further studies, or may fail to approve or may delay approval of our drug candidates; the occurrence of adverse safety events; failure to protect and enforce our intellectual property and other proprietary rights; failure to successfully execute or realize the anticipated benefits of our strategic and growth initiatives, including our collaboration with Acadia; our ability to fund development activities and achieve development goals to the end of 2025; technology failures or breaches; our dependence on collaborators, including Acadia, and other third parties for the development, regulatory approval, and commercialization of products and other aspects of our business, which are outside of our full control; the direct and indirect impacts of the ongoing COVID-19 pandemic and its variants on our business; risks associated with current and potential future healthcare reforms; risks relating to attracting and retaining key personnel; failure to comply with legal and regulatory requirements; risks relating to access to capital and credit markets; environmental risks; risks relating to the use of social media for our business; and the other risks and uncertainties that are described in the Risk Factors section of our most recent Annual Report on Form 10-K, our Quarterly Reports on Form 10-Q and in other reports we have filed with the U.S. Securities and Exchange Commission. These statements are based on our current beliefs and expectations and speak only as of the date of this presentation. We do not undertake any obligation to publicly update any forward-looking statements.

By attending or receiving this presentation you acknowledge that you are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date such statements are made; you will be solely responsible for your own assessment of the market and our market position; and that you will conduct your own analysis and be solely responsible for forming your own view of the potential future performance of Stoke.

OUR GOAL:

Upregulate protein expression to treat the underlying cause of severe genetic diseases

Stoke's pipeline offers potential first-in-class disease modifying new medicines for diseases caused by protein insufficiency

STK-001 for Dravet syndrome

A severe and progressive genetic epilepsy

STK-002 for Autosomal Dominant Optic Atrophy (ADOA)

The most common inherited optic nerve disorder

Rett syndrome, Syngap1 syndrome

Severe and rare genetic neurodevelopmental diseases

And beyond...

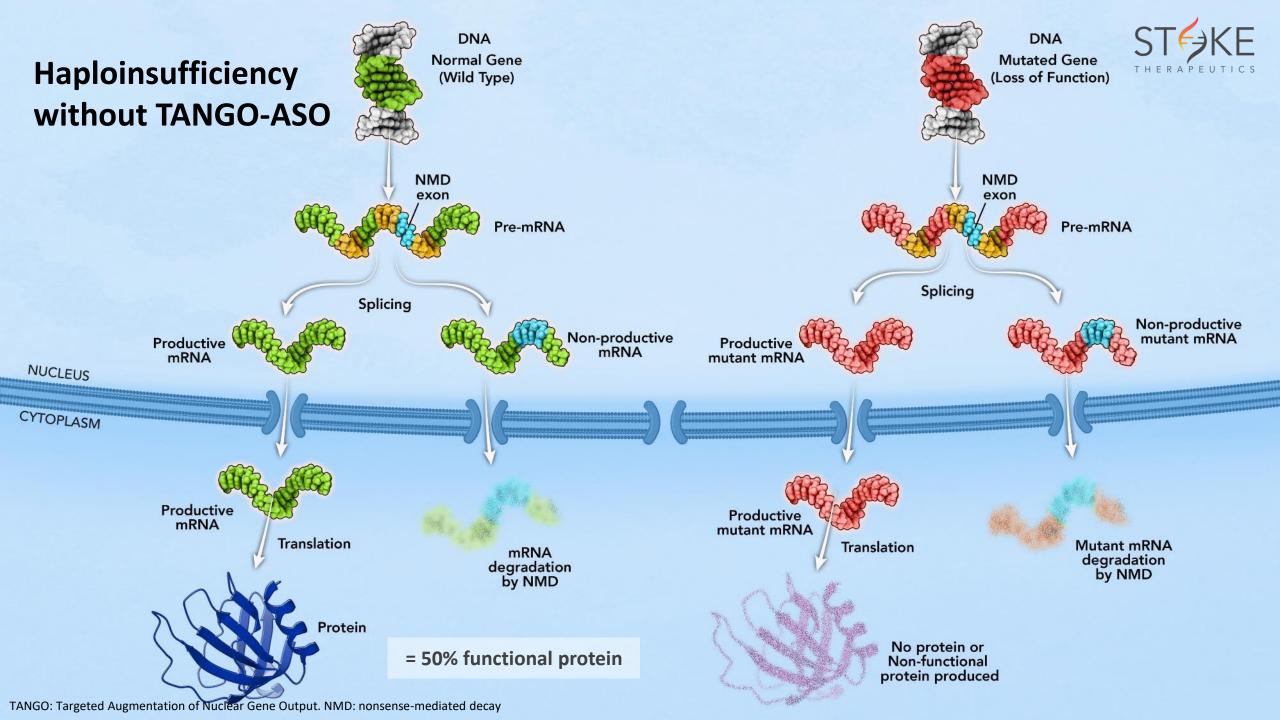
~6,500 additional genes with TANGO target signatures

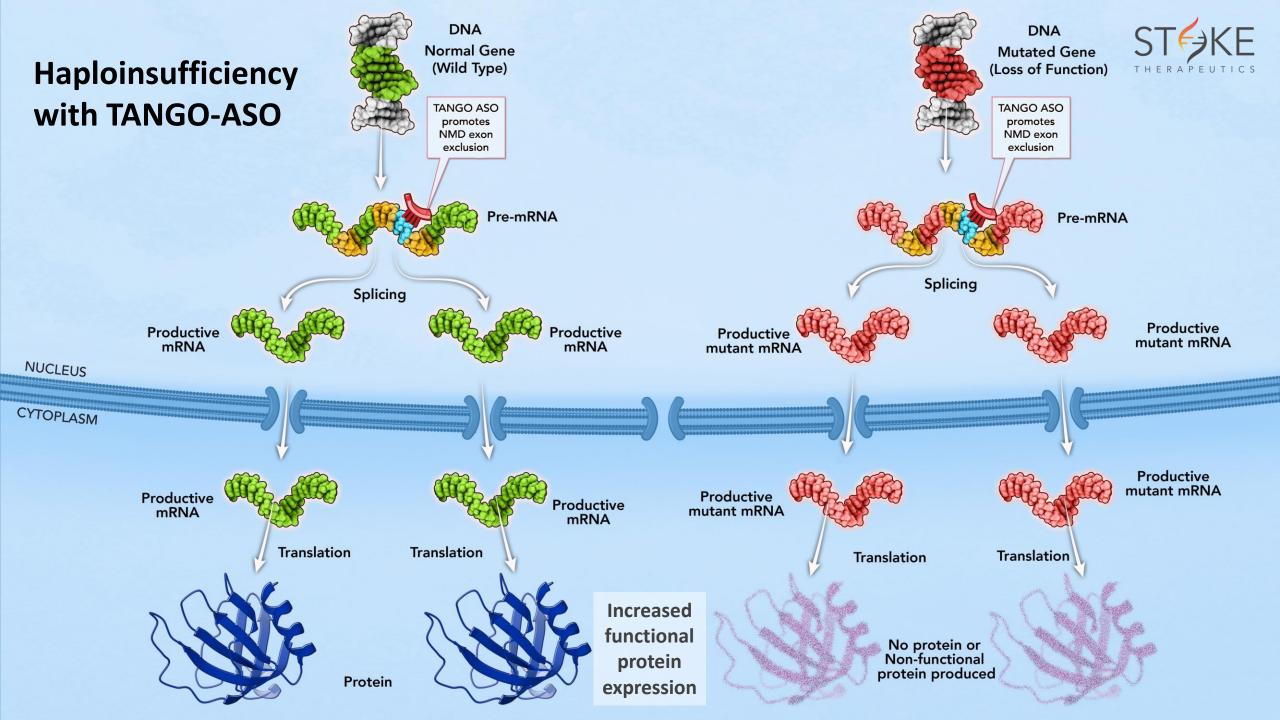
Advantages of Stoke's Approach vs. Other Genetic Approaches

Selectively boosts expression only in tissues where the protein is normally expressed

Does not alter DNA

No observed unwanted off-target genetic effects


Ability to control dose level and duration



Utility across small and large gene targets and mutations

Simple and scalable manufacturing

Dravet Syndrome: A Severe, Progressive Genetic Epilepsy

85%

of cases caused by a **HAPLOINSUFFICIENCY** of the *SCN1A* gene

RESULTING in

50%

Na_V1.1 protein expression

1 out of 16,000

babies are born with Dravet syndrome

Up to

20%

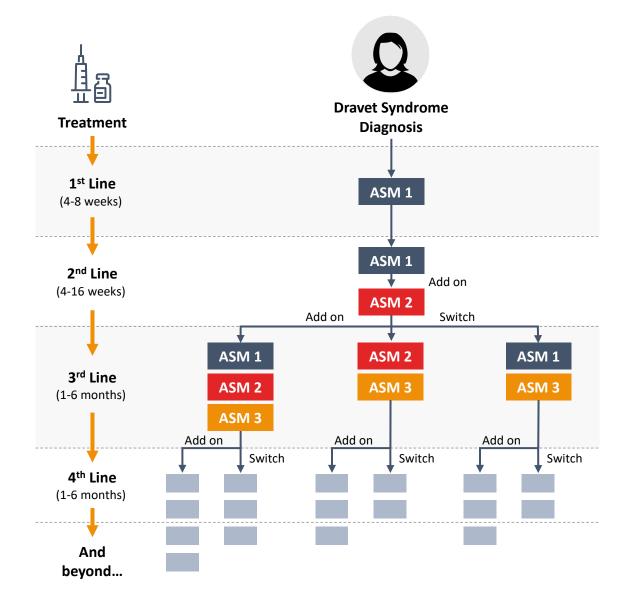
of children and adolescents with Dravet syndrome die before adulthood, due to SUDEP¹, prolonged seizures, seizurerelated accidents or infections

Seizures are not adequately controlled in

90% of people with Dravet syndrome

~35,000

people affected in the U.S., Canada, Japan, Germany, France and the UK


Dravet syndrome is not concentrated in a particular geographic area or ethnic group

¹ Sudden Unexpected Death in Epilepsy

Current Treatment Paradigm is Burdensome and Ineffective

Most patients end up on 3 or more anti-seizure medicines (ASM)

Clinician perspectives on current treatment options

"Eliminating seizures is not possible. We strive for balance between seizure frequency, duration, and quality of life. Parents tolerate more seizures if it enables normal social activity."

"Patients are never well-controlled on one drug. After a month or two establishing efficacy, dosing, and comfort, we always add at least a second."

"ASMs are notorious for side effects, which is a big reason we switch drugs so frequently."

Our Goal: Transform the Treatment of Dravet Syndrome by Targeting the Underlying Cause of the Disease, Not Just the Seizures

Multiple medicines available for

Seizure management

No medicines available for

Syndrome management

Available medicines used to control seizures:

- Acetazolamide
- Benzodiazepines
- Brivaracetam
- Cannabidiol
- Carbamazepine
- Clobazam
- Ethosuximide

- Felbamate
- Fenfluramine
- Lamotrigine
- Levetiracetam
- Mesuximide
- Oxcarbazepine
- Phenytoin

- Rufinamide
- Stiripentol
- **Topiramate**
- Valproate products
- Zonisamide

STK-001

The only potential disease-modifying approach currently in the clinic

Despite these treatments, seizures are not adequately controlled in 90% of patients

Dravet Syndrome is More Than "Just Seizures"

Intellectual Disability & Developmental Delays

"Over time, we have seen **slow, steady decline** in all areas, from speech, to mobility,
endurance, loss of energy, tolerance for
stimulation, stamina, etc."

Language & Speech Disturbances

"At age 19, [our son] stopped talking, seemingly losing his capacity for speech overnight. Most days he is silent, and though he can understand simple conversation he is largely unable to express himself."

Movement & Balance

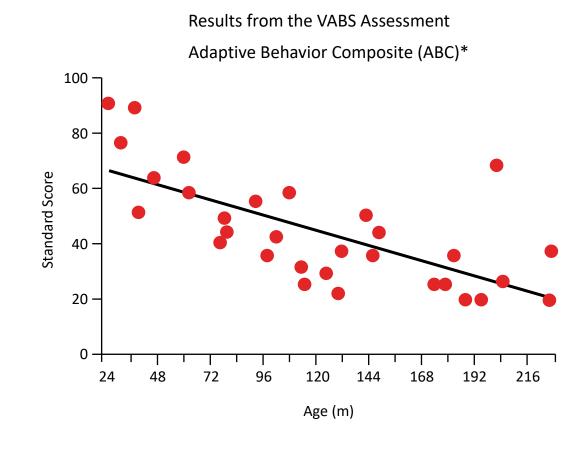
"We're disappointed when [our son's]
physical activity is limited and the short
walk or visit that we plan with his
grandmothers must now be changed to a
longer wheelchair ride."

Sleep Abnormalities

"Every single night, he has seizures in his sleep.
In addition to all of the other comorbidities of DS, he's robbed of the basic human necessity of getting a good night's sleep. This impacts our entire family, as it is hard to function on so little sleep day after day."

Non-Seizure Comorbidities of DS are Progressive and Measurable

Gap in overall intellectual development and adaptive function between patients and neurotypical children appears to widen with age

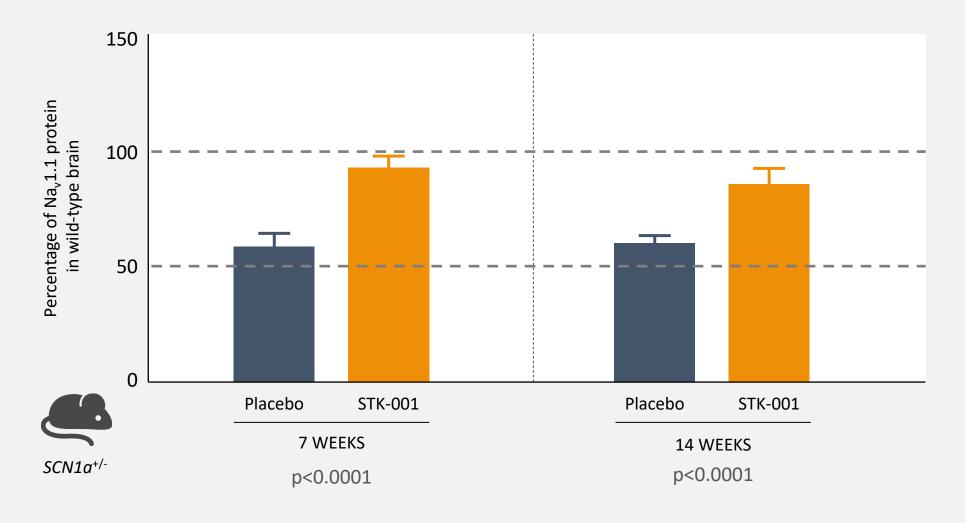


An observational study of Dravet Syndrome patients

Initial findings showed:

- Validation of standard cognitive measures for use in DS patients
- Substantially decreased neurocognitive abilities despite the use of multiple anti-seizure medications
- A gap in adaptive functioning was observed in VABS* testing

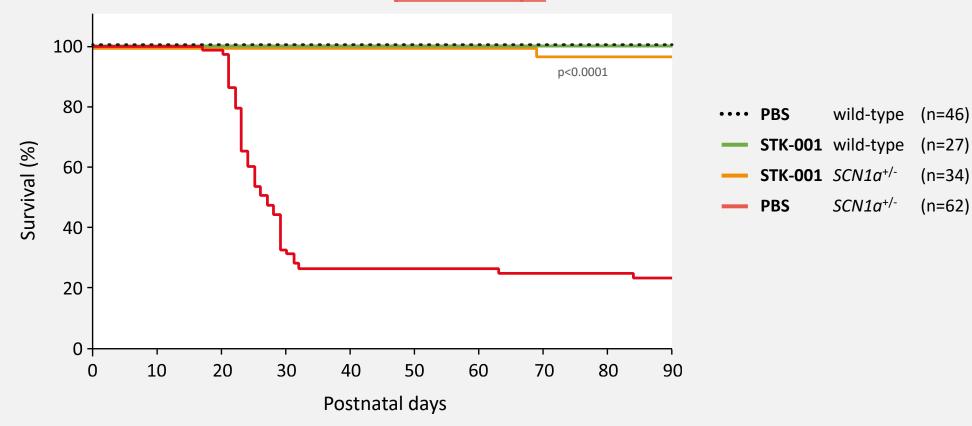
(n=36, 2-18 year-olds). Study ongoing.



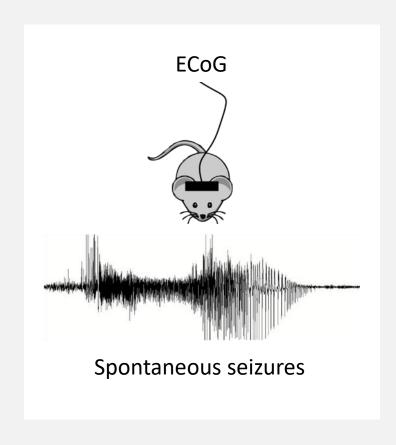
^{*} VABS = Vineland Adaptive Behavior Scales

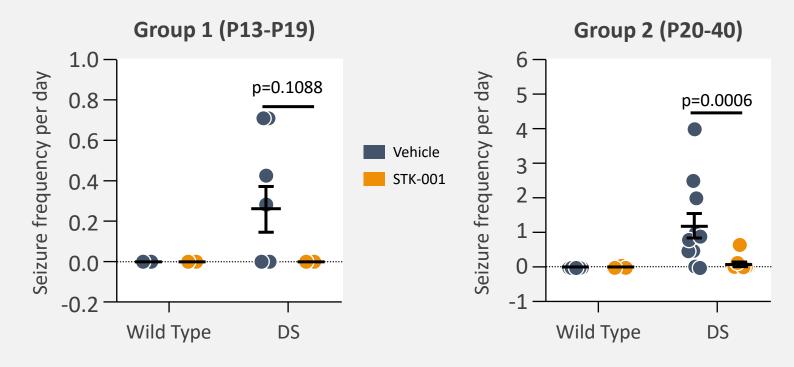
^{*} ABC score based on Communication, Daily Living, and Socialization domains and expressed relative to normative mean of 100 Source: BUTTERFLY: An Observational Study to Investigate Cognition and Other Non-seizure Comorbidities in Children and Adolescents with Dravet Syndrome (DS) (AES 2021).

STK-001 Restores $Na_V1.1$ to Near Normal Levels for >3 Months in Dravet Syndrome (DS) Mice after a Single Dose

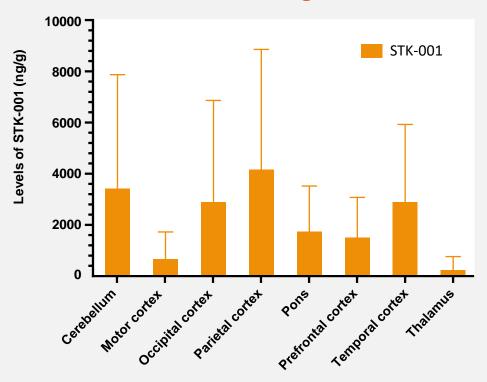


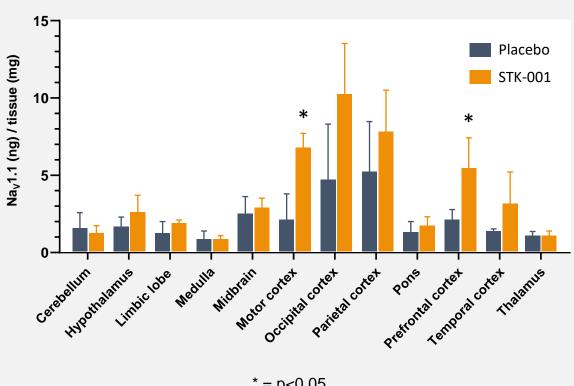
STK-001 Significantly Reduces Premature Mortality in DS Mice After a Single Dose


Significant improvements in survival after STK-001 administration at postnatal day 2



STK-001 Administration Reduces Seizure Frequency in DS Mice


A single dose of STK-001 completely stopped seizure events early (P13-19) and substantially reduced seizure frequency late (P20-40)


STK-001 Achieves Broad Distribution and Increases Na_v1.1 Protein Expression in NHPs

Study 1: Exposure of STK-001 observed in all brain regions

Study 2: Na_v1.1 protein levels increased up to 3-fold

* = p < 0.05

Single dose restores Na_V1.1 to nearnormal levels for >3 months in DS mice

Significantly reduces mortality and seizure frequency in DS mice

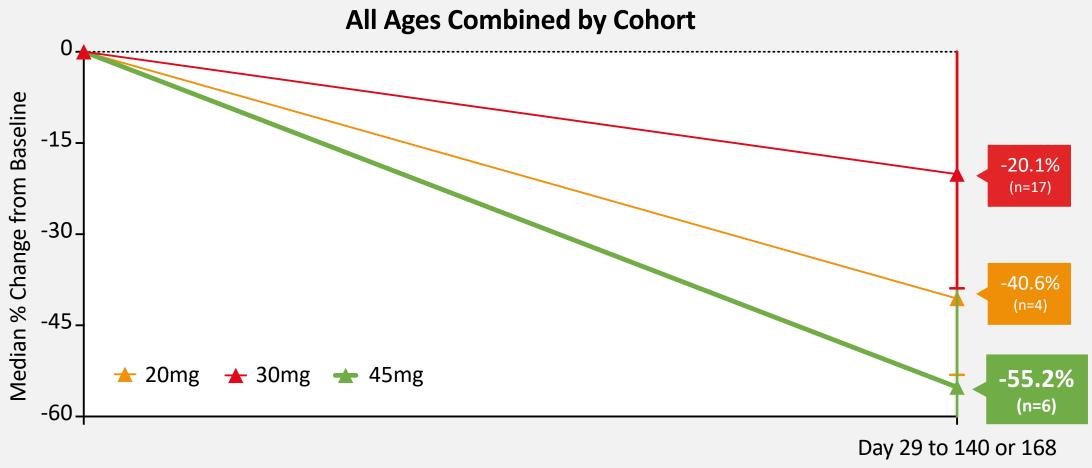
Achieves broad distribution and increases Na_v1.1 protein expression in NHPs

NHP toxicology studies support current clinical dosing

Sources: Targeted Augmentation of Nuclear Gene Output (TANGO) of SCN1A reduces seizures and rescues parvalbumin positive interneuron firing frequency in a mouse model of Dravet syndrome (AES 2020). Wengert ER, Wagley PK, Strohm SM, Reza N, Wenker IC, Gaykema RP, Christiansen A, Liau G, Patel MK. Targeted Augmentation of Nuclear Gene Output (TANGO) of Scn1a rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet Syndrome. Brain Res. 2022;1775:147743. Stoke data. TANGO oligonucleotides for the treatment of Dravet Syndrome: Safety, biodistribution and pharmacology in the non-human primate (AES 2019)

Phase 1/2a Trials of STK-001 for Dravet Syndrome are Ongoing

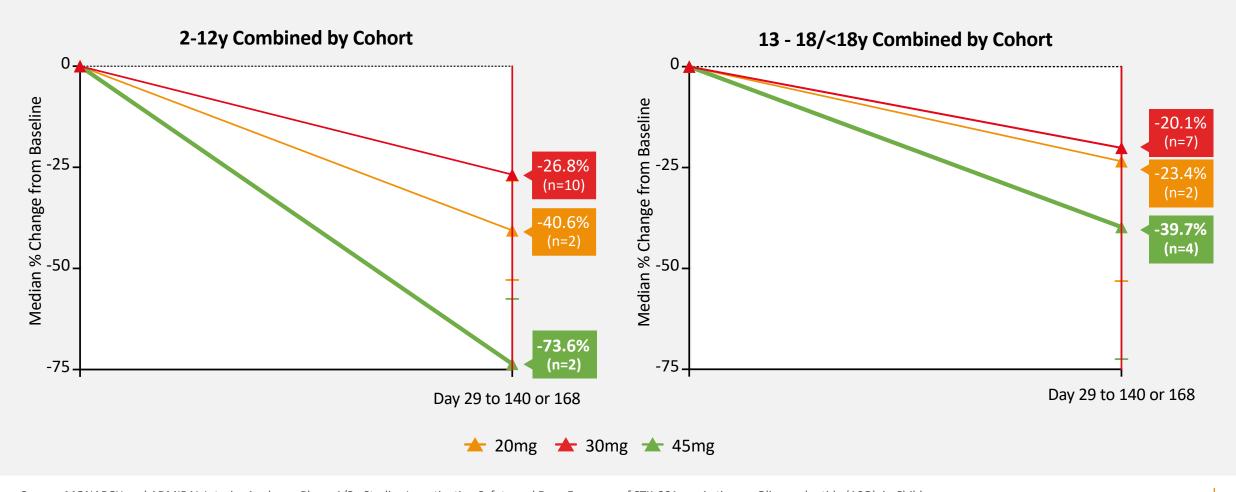
Parallel studies in the US & UK evaluating children and adolescents ages 2 to 18 years old



	Design	Evaluation of STK-001 (up to 70mg*)	Evaluation of STK-001 (up to 70mg)
	Status	SAD @70mg: Enrollment underway MAD @45mg: Dosing complete	MAD @70mg: Dosing ongoing
Ī	Primary Endpoint	Safety and tolerability of SAD and MAD dose levels Characterize human pharmacokinetics (PK) and	Safety and tolerability of MAD dose levels d cerebrospinal fluid (CSF) drug exposure
	Secondary Endpoint	Change in seizure frequency, overall clinical status, and quality of life	
	Open-Label Extension	Enrollment and dosing ongoing (30mg)	Enrollment and dosing ongoing (45mg) Longwing

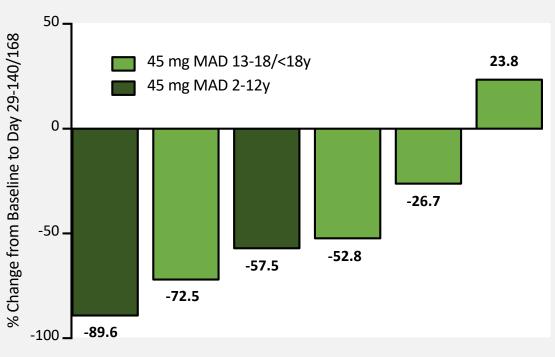
^{*}Multiple doses >45mg and single doses >70mg remain on FDA partial clinical hold Sources: MONARCH and ADMIRAL Interim Analyses: Phase 1/2a Studies Investigating Safety and Drug Exposure of STK-001, an Antisense Oligonucleotide (ASO), in Children and Adolescents with Dravet Syndrome (DS) (AES 2022).

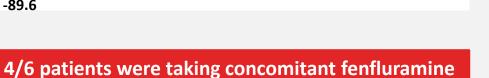
Reductions in Convulsive Seizure Frequency Observed in Patients Treated With STK-001 On Top of Multiple Anti-Seizure Medicines

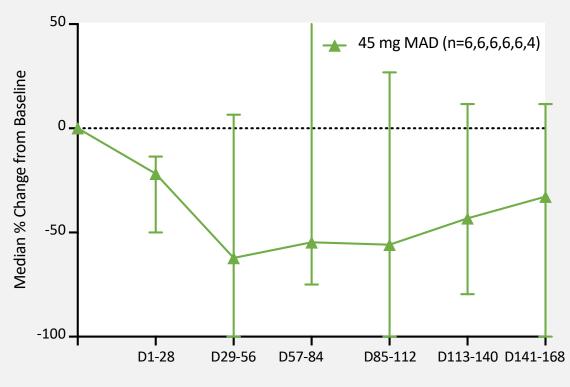


>50% of patients were taking concomitant fenfluramine

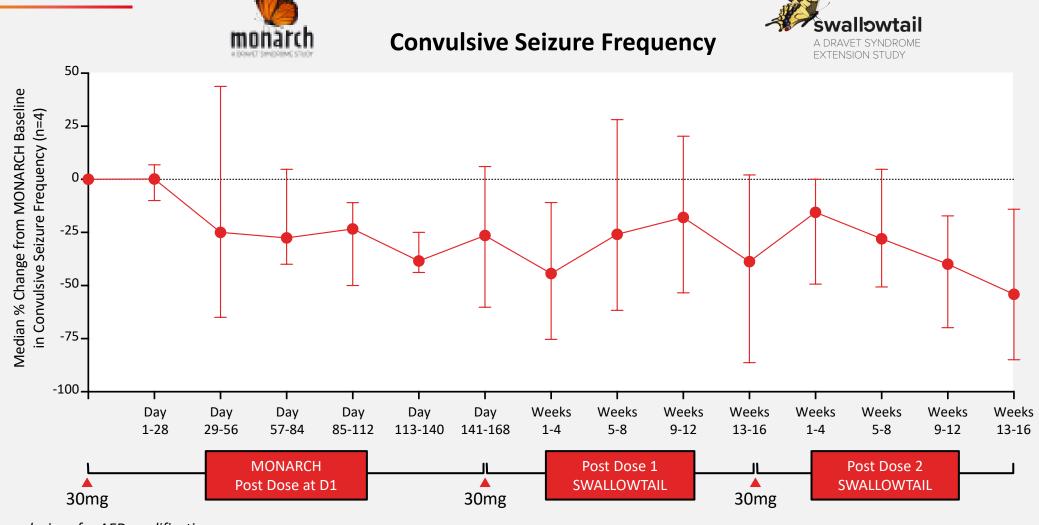
Reductions in Convulsive Seizure Frequency Observed Across Age Groups Taking Multiple Doses of STK-001


74% Median seizure reduction observed in younger patients



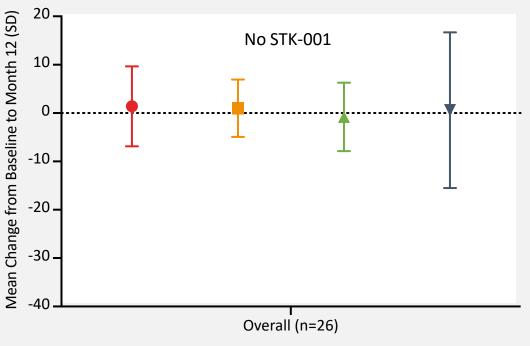

67% (4/6) Patients Experienced >50% Reduction in Convulsive Seizure Frequency with Three Doses of STK-001 (45mg)

Reductions began after the first dose and continued with additional treatment

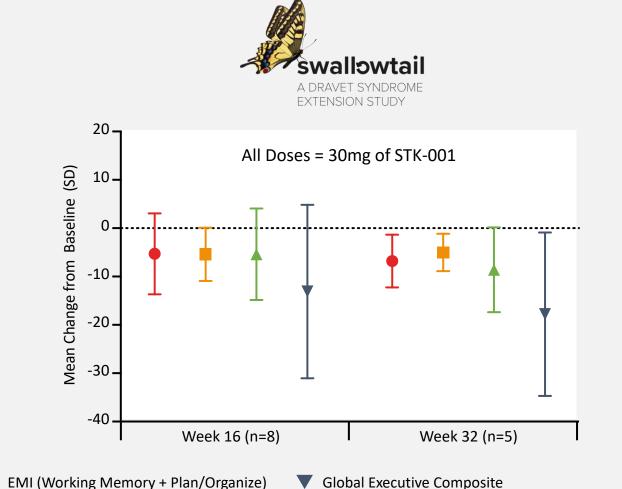


Convulsive Seizure Frequency All Ages

Reductions in Seizure Frequency Were Maintained with Ongoing


STK-001 Treatment

Improvements in Non-Seizure Comorbidities Measured by the BRIEF-P Indicate the Potential for Disease Modification



ISCI (Inhibit + Emotional Control)

Antisense Oligonucleotide (ASO) STK-001 (AES 2022).

FI (Shift + Emotional Control)

STK-001 Has Potential to Address the Genetic Cause of Dravet Syndrome

Summary of Key Ph1/2a Interim Data

- Single and multiple doses of STK-001 up to 45mg were well-tolerated
- 55% median reduction in convulsive seizure frequency observed in patients treated with three doses of STK-001 (45mg)
- Reductions in seizure frequency were maintained with ongoing treatment
- Early indication of improvements in non-seizure comorbidities as measured by BRIEF-P*

^{*}Behavior Rating Inventory of Executive Function—Preschool Version, an assessment of pediatric executive function
Sources: MONARCH and ADMIRAL Interim Analyses: Phase 1/2a Studies Investigating Safety and Drug Exposure of STK-001, an Antisense Oligonucleotide (ASO), in
Children and Adolescents with Dravet Syndrome (DS) (AES 2022). SWALLOWTAIL: An Open-Label Extension (OLE) Study for Children and Adolescents with Dravet
Syndrome (DS) who Previously Participated in a Study of Antisense Oligonucleotide (ASO) STK-001 (AES 2022).

Autosomal Dominant Optic Atrophy (ADOA): A Severe, Progressive Optic Nerve Disorder

65-90%

of cases caused by mutations in one allele of the *OPA1* gene, most of which lead to a **HAPLOINSUFFICIENCY**

RESULTING in

50%

OPA1 protein expression and disease manifestation

1 out of 30,000

people are affected globally with a higher incidence of ~1 out of 10,000 in Denmark due to a founder effect

>400

Different *OPA1* mutations reported in ADOA patients

Up to

46%

of patients are registered legally blind

80%

of patients are symptomatic by age 10 ~18,000

people affected in the U.S., Canada, Japan, Germany, France and the UK

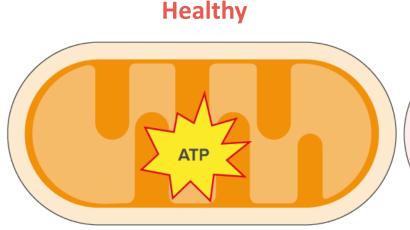
Sources: Yu-Wai-Man P et al. *Ophthalmology*, 2010; Yu-Wai-Man P, Chinnery PF. *Ophthalmology*, 2013; P. Amati-Bonneau P et al. *The International Journal of Biochemistry* & *Cell Biology*, 2009; Lenaers G, Hamel C, Delettre C, et al. *Orphanet J Rare Dis*, 2012; Chun BY and Rizzo JF III. *Curr Opin Ophthalmol*, 2016; Le Roux B, Lenaers G, Zanlonghi X et al. *Orphanet J Rare Dis*, 2019; "What is ADOA?" Autosomal Dominant Optic Atrophy Association. Accessed May 6, 2020, from https://www.adoaa.org/what-is-adoa;

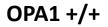
No Approved Disease-Modifying Therapies for ADOA

Healthy Vision

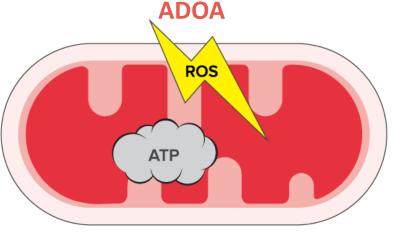
Simulation of Optic Neuropathy

- Most common inherited optic nerve disorder
- Leads to central field defects and reduced color vision in both eyes
- Severity can vary; rate of vision loss difficult to predict
- Supportive services and low-vision aids are offered for patients





OPA1 is Critical for Normal Mitochondrial Function and Cellular Metabolism



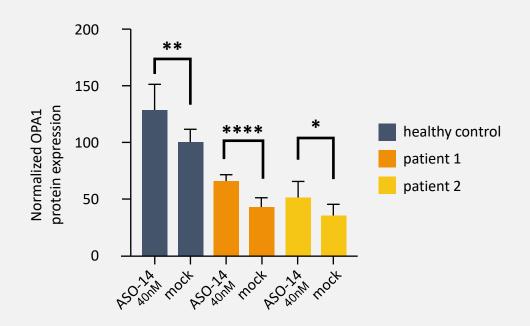
- Retinal ganglion cells have very high energy (ATP) requirements
- Impaired mitochondrial function leads to cell death
- OPA1 is critical for mitochondrial function and energy production

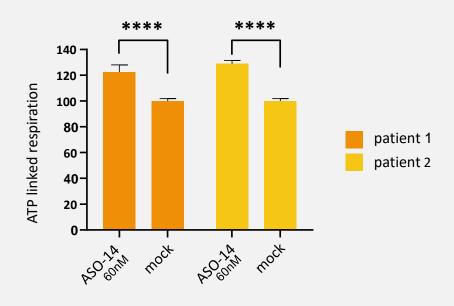
Mitochondrial Bioenergetics Functional
Cristae Structural Stability
Antioxidant Defense

OPA1 +/-

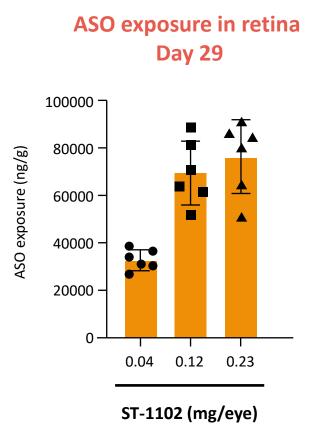
Mitochondrial Bioenergetic Dysfunction
Cristae Structural Disruption
Oxidative Stress

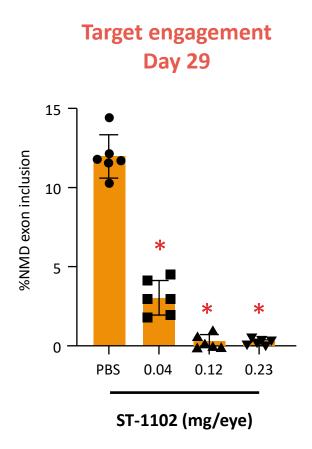
Cell Survival

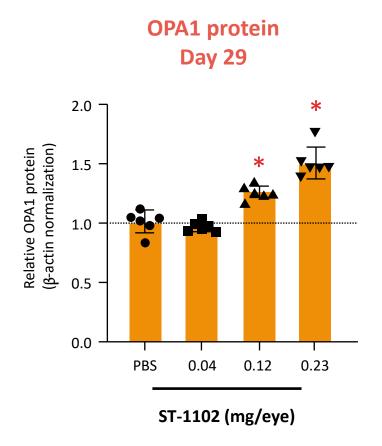



TANGO ASO Increases OPA1 Protein and ATP Linked Mitochondrial Respiration in ADOA Patient Cells

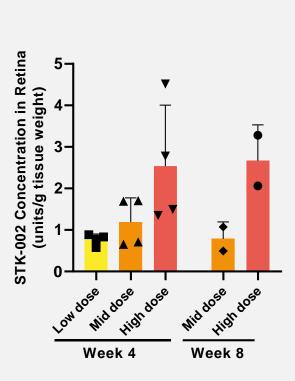
ASO treatment increased OPA1 protein levels in OPA1 deficient ADOA patient cells


ASO treatment increased ATP linked respiration in OPA1 deficient ADOA patient cells

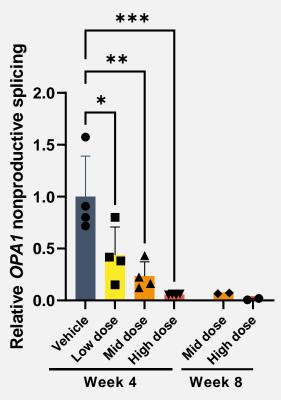


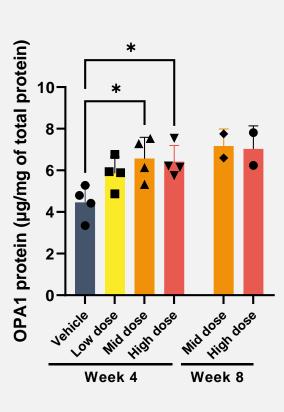


TANGO ASO Demonstrates Dose-Dependent OPA1 Protein Increases in Rabbit Retina



*P<0.0005 by one-way ANOVA compared to PBS group


Dose-Related Target Engagement and OPA1 Protein Upregulation in Retinal Tissue of NHPs following IVT Administration of STK-002


STK-002 exposure

Target engagement

OPA1 protein

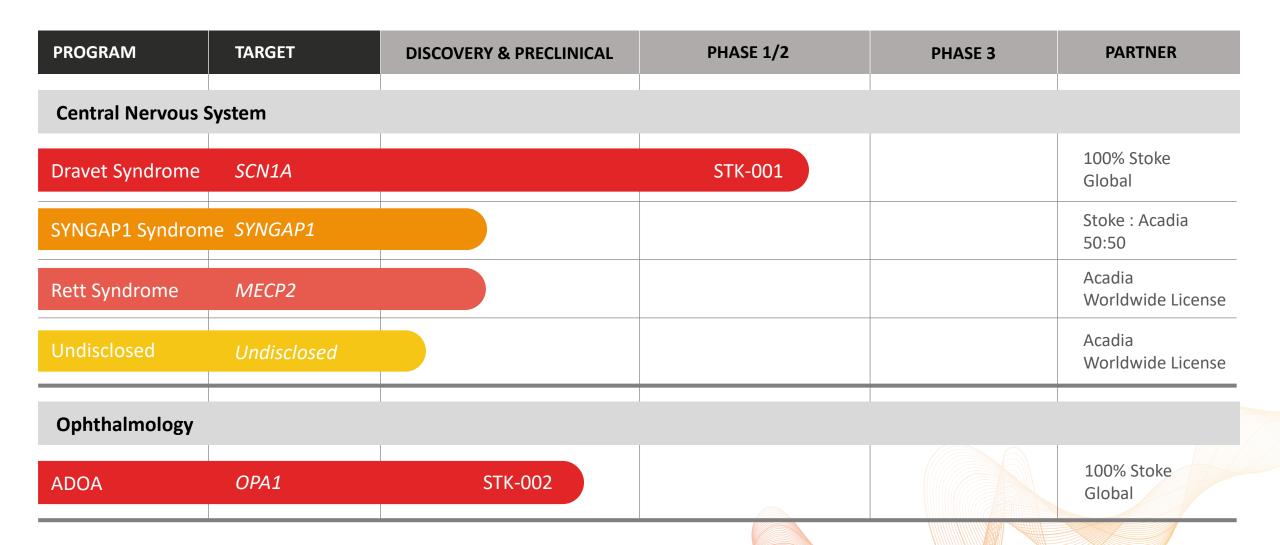
Preclinical Findings Support Clinical Development of STK-002

Summary of Key Preclinical Data

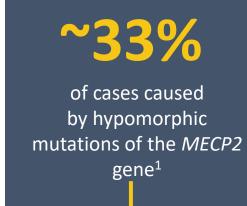
Increase OPA1 protein and ATP linked respiration in ADOA patient cells

Result in dose-dependent increases in OPA1 protein expression in rabbit retina

Were well tolerated for up to 29 days after intravitreal injection in rabbit



Dose-related increase in OPA1 protein expression was observed in NHP RGCs


CTA submitted in the UK to enable Phase 1/2 start in 2024

Our Pipeline of First-in-Class Disease Modifying Potential Medicines ST >KE

Rett Syndrome: A Severe, Debilitating Neurological Disorder

Period of rapid decline typically begins between

6 to 18

months⁴

1 out of 10,000 to 15,000 females are born with Rett syndrome²

Symptoms include³:

- Loss of purposeful hand use
- Involuntary hand movements such as handwringing
- Loss of speech
- Loss of mobility or gait disturbances

60-80% of patients have **epilepsy**⁴

Partial loss of function of the MeCP2 protein

RESUITING in

Note: All seizure types have been reported in Rett syndrome. Complex partial and generalized tonic-clonic are the most common Sources: 1 RettBase (http://mecp2.chw.edu.au/); GnomAD (https://gnomad.broadinstitute.org); NOMAD; 2 National Institutes of Health – National Institute of Neurological Disorders and Stroke; ³ International Rett Syndrome Foundation; ⁴ Operta et al., Brain Behav 2019

SYNGAP1 Syndrome: A Severe Intellectual Disability / Developmental and Epileptic Encephalopathy (ID/DEE)

>80% of cases caused by a **HAPLOINSUFFICIENCY** of the SYNGAP1 gene¹ **RESULTING** in 50% SynGAP protein expression

1-2 out of 100,000 children are born with SYNGAP1-ID/DEE

1-2%

of all intellectual disability cases²

of patients have generalized epilepsy³ 100%

of patients have developmental delay or intellectual disability³

of patients have autism and other behavioral abnormalities³

Sources: 1 Parker et al., American Journal of Medical Genetics, 2015; Jimenez-Gomez et al., Journal of Neurodevelopmental Disorders, 2019; ² SYNGAP1 Resource Guide, Second Edition; An Overview of SYNGAP1 Basic Biology and Clinical Description. Bridge the Gap SYNGAP (now SYNGAP1 Foundation); SynGAP Research Fund; ³ SYNGAP1-Related Intellectual Disability: https://www.ncbi.nlm.nih.gov/books/NBK537721/# syngap1-id Clinical Characteristics

2023 Priorities

Advance STK-001 for Dravet Syndrome to Pivotal

- 45mg clinical data anticipated in mid-2023
- 70mg clinical data anticipated in second half of 2023
- Complete Phase 1/2a in 2023 to enable a Phase 3 program in 2024

Advance STK-002 for ADOA

 Submit CTA in the UK in the first half of 2023 to enable Phase 1/2 start in 2024

Develop & Expand Pipeline

- Expand TANGO ASOs as a first-inclass disease-modifying approach for additional genetic diseases
- Execute on collaboration with Acadia to advance Rett syndrome and Syngap1 syndrome programs

Current Liquidity* Anticipated to Fund Operations to the End of 2025

\$230.2M

Cash, Cash Equivalents,

Marketable Securities, and Restricted Cash

as of 12/31/2022

39.4M

Common Shares Outstanding

as of 12/31/2022

^{*}Including \$44.7 million in proceeds from our Controlled Equity Offering Sales Agreement since December 31, 2022

Copyright Stoke Therapeutics, Inc. Not for publication or distribution